- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000100000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Sharma, Kunind (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Buildings consume nearly 40% of global energy and produce similar emissions. Whiletechnological advances address efficiency, occupant behavior causes energy use variations up to 300% between identical buildings. This gap between predicted and actual building performance impacts building design, operations, and grid demand management programs. Through analyses of smart thermostat data from 1,400 single-occupant homes, the researchdemonstrates that occupants respond to 8°F thermostat setpoint changes within a median of 15 minutes, while 2°F changes trigger responses within a median of 30 minutes. This highlights an understudied temporal relationship between thermostat setbacks and response time of occupant behaviors. Models of such behavior dynamics are required to incorporate occupant impacts into building performance simulation. A key contribution of this dissertation is the Thermal Frustration Theory (TFT), which positsthat thermal discomfort driven behaviors are caused by the time-accumulation of discomfort, not simply a temperature deviation threshold or a delay from an initiating event. Using a dataset of 634 thermostats, each with 25+ manual setpoint changes, a comparative analysis of TFT and comfort zone and a delayed response theories demonstrated that personalized TFT models better predict when manual setpoint change occur. This was measured by the area under the curve statistical measure (AUC); all three models perform similarly by a Matthews Correlation Coefficient measure. Higher AUC performance is especially important for modeling occupant behavior in demand response programs where false negatives of rare occupant interactions could adversely affect grid stability. EnergyPlus based simulations were conducted with TFT-derived occupant models, demonstrating the ability to identify parameters of known TFT models from only data observable with smart thermostats, even under the presence of noise from routine overrides. Overall, the dissertation highlights that thermostat interactions are neither static,instantaneous, nor driven solely by the environment. Instead, temporal accumulation of discomfort and routine-based behavior play important roles. The methodology and results offer a pathway towards more accurate modeling of human-building interactions for policy assessment, building design, and demand response programs.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
